If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (9x3y2 + 7x2y2 + 5xy2) + (5x3y2 + -3x2y2 + -3xy2) = 0 Reorder the terms: (5xy2 + 7x2y2 + 9x3y2) + (5x3y2 + -3x2y2 + -3xy2) = 0 Remove parenthesis around (5xy2 + 7x2y2 + 9x3y2) 5xy2 + 7x2y2 + 9x3y2 + (5x3y2 + -3x2y2 + -3xy2) = 0 Reorder the terms: 5xy2 + 7x2y2 + 9x3y2 + (-3xy2 + -3x2y2 + 5x3y2) = 0 Remove parenthesis around (-3xy2 + -3x2y2 + 5x3y2) 5xy2 + 7x2y2 + 9x3y2 + -3xy2 + -3x2y2 + 5x3y2 = 0 Reorder the terms: 5xy2 + -3xy2 + 7x2y2 + -3x2y2 + 9x3y2 + 5x3y2 = 0 Combine like terms: 5xy2 + -3xy2 = 2xy2 2xy2 + 7x2y2 + -3x2y2 + 9x3y2 + 5x3y2 = 0 Combine like terms: 7x2y2 + -3x2y2 = 4x2y2 2xy2 + 4x2y2 + 9x3y2 + 5x3y2 = 0 Combine like terms: 9x3y2 + 5x3y2 = 14x3y2 2xy2 + 4x2y2 + 14x3y2 = 0 Solving 2xy2 + 4x2y2 + 14x3y2 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '2xy2'. 2xy2(1 + 2x + 7x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'xy2' equal to zero and attempt to solve: Simplifying xy2 = 0 Solving xy2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying xy2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Subproblem 2
Set the factor '(1 + 2x + 7x2)' equal to zero and attempt to solve: Simplifying 1 + 2x + 7x2 = 0 Solving 1 + 2x + 7x2 = 0 Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 0.1428571429 + 0.2857142857x + x2 = 0 Move the constant term to the right: Add '-0.1428571429' to each side of the equation. 0.1428571429 + 0.2857142857x + -0.1428571429 + x2 = 0 + -0.1428571429 Reorder the terms: 0.1428571429 + -0.1428571429 + 0.2857142857x + x2 = 0 + -0.1428571429 Combine like terms: 0.1428571429 + -0.1428571429 = 0.0000000000 0.0000000000 + 0.2857142857x + x2 = 0 + -0.1428571429 0.2857142857x + x2 = 0 + -0.1428571429 Combine like terms: 0 + -0.1428571429 = -0.1428571429 0.2857142857x + x2 = -0.1428571429 The x term is 0.2857142857x. Take half its coefficient (0.1428571429). Square it (0.02040816328) and add it to both sides. Add '0.02040816328' to each side of the equation. 0.2857142857x + 0.02040816328 + x2 = -0.1428571429 + 0.02040816328 Reorder the terms: 0.02040816328 + 0.2857142857x + x2 = -0.1428571429 + 0.02040816328 Combine like terms: -0.1428571429 + 0.02040816328 = -0.12244897962 0.02040816328 + 0.2857142857x + x2 = -0.12244897962 Factor a perfect square on the left side: (x + 0.1428571429)(x + 0.1428571429) = -0.12244897962 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 2x+4x=90 | | .75a+4=.25(3a+16) | | 50+0.45x=35+.050x | | -10n-3(8+8n)=-6(n-4) | | 3t-4=50 | | 20x-15=65 | | -7(x+3)=-2(x+3)-5 | | -3(4b-10)=.5(24b+60) | | (2x^7-8x^4+9x^2+2)+(7x^5+2x^4-4x)= | | 7(T-2)=2T-9 | | 5x-8=13+4x | | y-2=.33(y+6) | | 50+0.45x+35+.050x= | | 23-4x=15 | | 50+0.45x= | | 6x+9=-69 | | 2s^2+9s+6=0 | | 8*x-1=11 | | 8*x-1= | | 9x+5=-202 | | 7*x-1=11 | | 2x+13=25 | | 16t^2-96t+144=0 | | 3d-7+2d-2=-9 | | 14y-10-5y=8 | | 13xy+5y^2-6xy+3y^2-6= | | 3(2c+10)-8c=8 | | 2c+6=5c+12 | | 3(4x+1)=7 | | 544=-16x^2+96t+400 | | (8x-1)(4x+8)=0 | | 27x^4-64x=0 |